

FR SILLIMANITE BRICKS

BRAND NAME	Al₂O₃ (%) min	Fe ₂ O ₃ (%) max	B.D. Gms/cc min	P.C.E. orton min	App. Porosity max	C.C.S. k.g./cm² min	R.U.L. Ta°C	P.L.C. °C/2Hrs
FR Sillimax I	58	2.0	2.4	36	22	400	1520	±1.0
FR Sillimax II	50	1.5	2.3	36	25	350	1550	±1.0
FR Sillimax III	62	1.5	2.5	36	15	500	1600	±0.8
FR Sillimax IV	58	1.5	2.3	36	23	400	1550	±1.0

LOW IRON & DENSE BRICKS

BRAND NAME	Al₂O₃ (%) min	Fe ₂ 0 ₃ (%) max	B.D. Gms/cc min	P.C.E. orton min	App. Porosity max	C.C.S. k.g./cm² min	R.U.L. Ta ^o C	P.L.C. °C/2Hrs
FR 40-S	40	2.0	2.2	33	22	350	1450	14500 ±0.6
FR 42-D	42	1.5	2.3	34	16	550	1480	14500 ±0.5
FR 45-S	45	2.0	2.25	33	21	400	1450	14500 ±0.8
FR 55-S	55	2.0	2.3	35	22	450	1480	15000 ±0.8
FR 60-S	60	2.0	2.35	36	22	450	1500	15000 ±0.8
FR 62-D	62	1.5	2.5	36	17	600	1500	15000 ±0.2
FR 70-S	70	2.5	2.65	37	23	500	1480	15000 ±2.0
FR 80-SP	80	2.3	2.75	37	22	500	1500	15500 ±2.0
FR 85-S	85	2.0	2.8	38	20	500	1500	15500 ±1.0

FIRE CLAY BRICKS HIGH ALUMINA BRICKS

				Ditte				
BRAND NAME	AI ₂ O ₃ (%) min	Fe ₂ O ₃ (%) max	A.P. % Min	B.D. Gms/cc min	C.C.S. kgs/cm² min	P.C.E. orton min	R.U.L. Ta ^o C Min.	P.L.C. % Max.
FR-30 (IS:6)	30	2.20	25	1.90	250	31.00	1350	±1.5 at 1350°C/2 hrs
FR-40 (IS:8)	40	2.50	23	2.10	350	32.00	1400	±1.0 at 1450°C/2 hrs
FR-45	45	2.60	21	2.20	370	32.00	1420	±1.5 at 1450°C/2 hrs
FR-50	50	2.75	23	2.30	400	32.50	1430	±1.5 at 1450°C/2 hrs
FR-55	55	2.90	23	2.40	400	33.00	1440	±1.5 at 1450°C/2 hrs
FR-60	60	3.00	23	2.55	430	34.00	1450	±1.5 at 1500°C/2 hrs
FR-65	65	3.00	23	2.60	450	34.50	1460	±2.0 at 1500°C/2 hrs
FR-70	70	3.20	23	2.65	500	35.00	1470	±2.0 at 1500°C/2 hrs
FR-80	80	3.50	21	2.75	600	37.00	1500	±2.5 at 1500°C/2 hrs

Note: 1. The Above Data are on Average Result Basis. 2. Size Tolerance \pm 1.5% Or 2mm Whichever is Greater

HIGH PURITY DENSE CASTABLES

BRAND NAME	A	K	C	M
Physical Properties				
Recommended Service Temp. °C (max)	1750	1600	1500	1700
Refractoriness °C (min) Orton (min)	1820 37	1683 31	1665 30	1800 36
Dry Density kg/m³ (min)	2800	2200	2100	2600
Linear Change % (max)	± 1.0 1550°C/3 hrs	± 1.5 1550°C/3 hrs	± 1.0 1550°C/3 hrs	± 1.0 1550°C/3 hrs
CCS kg/cm ² (min) 110°C	600	350	350	550
Maximum Grain Size (mm)	5	5	5	5
Chemical Analysis				
Al ₂ O ₃ (%) min	90	60	50	80
FeO ₃ (%) max	8.0	1.0	1.5	1.5

HIGH PURITY INSULATING CASTABLES

	FR CAST-9	FR CAST-11	FR CAST-13	FR CAST-15
43	44	43	44	45
1.5	1.5	1.5	1.5	1.5
1350	1350	1350	1350	1400
0.70	0.90	1.25	1.25	1.60
30-35	27-32	30-35	27-32	23-28
6	6	6	6	6
45	80	45	80	130
30	40	30	40	75
40	40	40	40	75
50	50	50	50	90
±0.2	±0.2	±0.2	±0.2	±0.2
±1.0	±0.8	±1.0	±0.8	±1.0
	1.5 1350 0.70 30-35 6 45 30 40 50 ±0.2 ±1.0	1.5 1.5 1350 1350 0.70 0.90 30-35 27-32 6 6 45 80 30 40 40 40 50 50 ±0.2 ±0.2 ±1.0 ±0.8 0.30 0.35 0.38 0.32	1.5 1.5 1350 1350 0.70 0.90 30-35 27-32 6 6 45 80 30 40 40 40 50 50 50 50 0.30 0.35 0.38 0.32 0.38 0.32 1350 1350 1350 1350 1350 125 30-35 45 40 40 40 40 50 50	1.5 1.5 1.5 1.5 1350 1350 1350 1350 0.70 0.90 1.25 1.25 30-35 27-32 30-35 27-32 6 6 6 6 45 80 45 80 30 40 30 40 40 40 40 40 50 50 50 50 \$\pmathrm{\p

DENSE CASTABLES

BRAND NAME		FR CRETE	FR CRETE SUPER	FR CRETE SPECIAL	
Physical Properties					
Recommended Service T	emp. °C (max)	1400	1450	1350	
Refractoriness °C (min)		1580	1680	1455	
Dry Density kg/m³ (min)		2100	2500	2250	
Linear Change % (max)		± 1.0 1400°C/2 hrs	± 1.5 1400°C/3 hrs	± 0.8 1350°C/2 hrs	
CCS kg/cm² (min)	110°C	250	350	400	
	1350°C	225	5	300	
	1450°C		450	(4)	
Maximum Grain Size (mr	n)	5	5	5*	
Chemical Analysis					
Al ₂ O ₃ (%) min		45	70	45	
FeO ₃ (%) max		4	5	4	

Note: Coarse grading can be supplied on request.

CHEMICAL BONDED PLASTIC REFRACTORY

PARTICULARS		FRCAST - 90 PR
Service Tem. °C (Max.)		1650
Refractoriness °C (Min)		1785
Bulk Density, gm/cc (Sample dried at 110°	° C for 24 h)	2.70
Cold Crushing Strength (kg/cm2) (Min)	110° C / 24h	650
	1300° C/5h	875
Permanent Linear Change (%) (Max)	1300° C/5h	-0.60
Chemical Analysis (%)	Al ₂ 0 ₃ (Nominal)	90.0
	Fe ₂ 0 ₃ (Max)	0.3
Abrasion Loss (ASTM C-704-93), cc (Max	.) at 110° C / 24h	5.0
	1300° C/5h	3.5
Binder Requirement (wt%)		9.5 - 10.0
Method of Application		Ramming (Hand / Machine)

LOW CEMENT CASTABLES

BRAND NAME		FR CAST LC-45	FR CAST LC-70	FR CAST LC-85	FR CAST LC-90
Max Service temp		1400°C	1550°C	1600°C	1600°C
Grading In mm		3	3	5	5
Water reqd in %		5-6.5	5-5.5	4.5-5.5	4.5-5.5
Setting		Chem./Hydraulic	Chem./Hydraulic	Chem./Hydraulic	Chem./Hydraulio
Chemical Analysis	% Al ₂ O ₃	45 min	70 min	83.±3 min	90 min
	% Fe ₂ O ₃	1.0 max	1.5 max	3.0 max	1.5 max
	% CaO	1.5 max	2.0 max	2.5 max	2.0 max
B.D. (gm/cc) (on vib	rocast block)	2.30	2.75	2.85	2.90
C.C.S. in kg/cm ² afte	er drying at 110 °C 24 Hrs	350 min	350 min	400 min	450 min
	1200 °C 2 Hrs	250 min	270 min	300 min	300 min
	1400 °C 2 Hrs	500 min	=	(#:	-
	1500 °C 2 Hrs	Nar	500 min	600 min	600 min
PLC in %	at 1400 °C 2 Hrs at 1400 °C 2 Hrs	± 1.2	- ± 1.5	- ± 1.5	- ± 1.5

CASTING POWDER (Open Cast)

The company is a known Casting Powder Manufacturer, Exporter, and Supplier in India. The continuous Casting Powder is available with us for all types of steels and various casting formats like billets, blooms, and slabs.

How It Works

Casting Powder contains low melting constituents which instantly generate liquid slag which penetrates into the gap between the mould and the solidifying shell of the billet. Casting Powder is added in small amounts and continuously over the casting duration. The melting of the Casting Powder occurs slowly in layers. Hence, the top surface of the liquid metal in the billet / slab / bloom always remains protected from the atmosphere.

Benefits

ŸLubrication

ŸProtection of liquid steel from atmospheric oxidation

ŸPromoting required heat transfer between the mould and solidifying shell

Traditionally Casting Powder is used for bloom and slab casting. Now designed for billet (open) casting also as an alternative to mould oil for some plants.

Chemical Analysis (Typical Value) Ÿ SiO (%) 30.20 , CaO (%) 26.46 , MgO (%) 2.10, Al 0 (%) 2.90, Na O(%) 4.03 ŸK 0(%) 1.85, F(%) 4.16, F.C(%) 18.21 loss On Ignition (%) 28.88 ŸBasicity 0.81 ,Softening point 1070 0 c,Melting Point 1140 0 c ,Bulk Density 0.6 gm/cc

Ÿ(-180 to -200) Mesh ŸGranuals

NOZZLE FILLING COMPOUND (NFC)

Carefully graded refractory nozzle filling compound which can be made as per requirement of customer's need for steel transfer ladle with slide gate system.

As it posses selected granulometry and high refractoriness, it does not sinter when in contact with molten steel around 1600 °C temperature with high ferrostatic head when kept in ladle nozzle-well cavity. Thus it results into free flowing when slide gate is opened and it comes out freely or with minor oxygen lancing establishing a very smooth stream from the ladle. Depending on nozzle diameter as well as holding time of molten metal in ladle, granulometry of nozzle filling compound and chemical composition of refractory filler change.

Available in three types

- 1. Chromite Base-Recommended for Mild Steel Production
- 2. Zircon Base-Recommended for Mild Steel Production &
- 3. Quartz Base

We are manufacturing, exporting and supplying the best quality Laddle covering compound. Our Laddle covering compound is made as per quality standards using optimum quality raw material. Laddle covering compound, offered by us, is free flowing in nature and used in tundish or ladle. Our Laddle covering compound is fairly priced.

Raw Material Used

AlminaRiceflakes

Chemical Properties

• Al O 45%₂ ₃ • SiO₂55%

SYNTHETIC SLAG

There is an old saying in Steel making process - "Take care of Slag, Slag will take care of Steel". Improper composition of Synthetic Slag is very detrimental for the quality of steel as it can lead to harmful reversion of P, S, and unwanted oxides.

Converter slag is a byproduct that outcomes from the 4th phase of the metallurgical process, crushed to -5mm, consisted mainly of Fe-oxides (Fe total about 60%) and used mainly as aggregate for the production of special type of concrete for covering oil tubes, or other similar works, in several places in the world.

Highlights

ŸIt is a special refining slag used for bearing steel making ŸIt has the actions of desulphurizing and deoxidizing

Advantages

ŸIt has great effect of deoxidation and desulfurization in the molten steel

ŸThe component is mixed uniformly and stably. It could greatly shorten the steelmaking time, efficiently remove impurities and improve the steel quality, and it is really a required additive for bearing steel making

ÿIt could be used as a liquid steel cleanser during the bearing steel refining and reduced dust float pollution effectively

Chemical Composition

Brand	CaO ₂ (%)content	Al ₂ O ₃ (%)content	SiO2(%)content	MgO ₂ (%)content
Refining Slag	48~60	25~38	3~8	2~5

